Chapter 5 Confidence Interval, t Distribution

• X bar and X has different Z standardization because X bar use standard error (divided by square root of n) but not for X.

$$P(6 \le \overline{X} \le 8) = P\left(\frac{6-7}{\sqrt{\frac{25}{100}}} \le Z \le \frac{8-7}{\sqrt{\frac{25}{100}}}\right)$$
$$= P\left(-\frac{1}{\frac{5}{10}} \le Z \le \frac{1}{\frac{5}{10}}\right)$$
$$P(6 \le X \le 8) = P\left(\frac{6-7}{\sqrt{25}} \le Z \le \frac{8-7}{\sqrt{25}}\right)$$
$$= P(-2 \le Z \le 2)$$
$$= 0.9772 - (1-0.9772)$$
$$= 0.5793 - (1-0.5793)$$
$$= 0.1586$$

• Predictive interval calculated using the SD and Confidence interval calculated using the Standard error. Z value is x bar – miu divided by standard error of x bar. To calculate z-score and compare with 95 confidence interval or using mean +- 2se.

$z = (x - \mu) / (\sigma / \sqrt{n})$

- Why there is question in the additional exercise that predictive interval that calculated using standard error?
- The null hypothesis rejected if the z value is out of range -1.96 < z < 1.96.
- Statistical Inference: The i.i.d. sampling each of the following is true except E(Y) < E(Y)
- Confidence Interval (Q5 2013)

• Z critical values

 Table 1a Two-sided critical z-values $(z_{\alpha/2})$ Table 1b One-sided critical z-values (z_{β})

 1 - α 1 - β

 .80
 .90
 .95
 .99
 .999

 1.28
 1.65
 1.96
 2.58
 3.29
 0.84
 1.28
 1.65
 2.33
 3.09

- 95% Confidence Interval of Coefficient Variables (Beta) is = Beta 1.96 x se, Beta + 1.96 x se.
- The probabilities calculated from the interval, getting higher if n is higher. On the other hand, the sigma larger, probability lower.

- If you want to see the result, just plug in any number in the model and compare 2 results. However, there are many other factors that affect dependent variables. Note that predictive interval is really big (look at the estimate of the variance of residuals (3865666562.7)/207.
- Unit of measurement influence beta, let say convert 1 to 1000 UoM, then Beta x 1000.
- Interpret the p-values. People seemed very confused at the tutorial in respect to p-values. You only have to compare them to significance levels:

90% confidence	95% confidence	99% confidence
$\alpha = .10$	$\alpha = .05$	$\alpha = .01$

So if you are testing at a 90% confidence, you have a significance level $\alpha = .10$. To test the null hypothesis at level α , we reject if the p-value is less than α . So in our example, p-value = .09 therefore I do not reject at 5% nor 1%. However .09 < .10 so I marginally reject the null at 10%. p-value that is zero to at least four decimal places.

• In order to know how many samples needed for the research, we need to calculate this way

We want
$$P(-5 \le X - \mu \le 5) = 0.99$$
, given $\sigma_X = 15$
In general $P\left[-Z\left(1 - \frac{\alpha}{2}\right)\sigma_{\bar{x}} \le \bar{X} - \mu \le Z\left(1 - \frac{\alpha}{2}\right)\sigma_{\bar{x}}\right] = 1 - \alpha$
Thus, $1 - \alpha = 0.99 \Rightarrow \alpha = 0.01 \Rightarrow \frac{\alpha}{2} = 0.005 \Rightarrow 1 - \frac{\alpha}{2} = 0.995$
So, $P\left(-Z_{.995} \frac{15}{\sqrt{n}} \le \bar{X} - \mu \le Z_{.995} \frac{15}{\sqrt{n}}\right) = 0.99$
 $\Rightarrow Z_{.995} \frac{15}{\sqrt{n}} = 5$
 $\Rightarrow n = \left(Z_{.995} \frac{15}{5}\right)^2$
 $= \left(2.576 \cdot \frac{15}{5}\right)^2$

- $= 59.7 (round up) \approx 60 observations$
- Read Stats output

Source	SS	df	MS		Number of obs	= 209
Model Residual	5166419.33 386566563	1 5166 207 1867	419.33 471.32		Prob > F R-squared Adi B-squared	= 0.0978 = 0.0132 = 0.0084
Total	391732982	208 1883	331.64		Root MSE	= 1366.6
salary	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
roe _cons	18.50119 963.1913	11.12325 213.2403	1.66 4.52	0.098 0.000	-3.428195 542.7902	40.43057 1383.592

 α : If the return on equity is zero, roe=0, then the predicted salary is the intercept, 963.191 which equals \$963,191 since salary is measured in thousands. β : If the return on equity increases by one percentage point, then the salary is predicted to change by about 18.50 or \$18,501.

• Important logic for the interval

```
d) We need the sampling probability distribution of \hat{\alpha} + \hat{\beta}. This is straightforward.

E(\hat{\alpha} + \hat{\beta}) = \alpha + \beta \text{ and} \\ \operatorname{Var}(\hat{\alpha} + \hat{\beta}) = \operatorname{Var}(\hat{\alpha}) + \operatorname{Var}(\hat{\beta}) + 2\operatorname{Cov}(\hat{\alpha}, \hat{\beta})
From OLS we know that that \hat{\alpha} and \hat{\beta} are normally distribution and a linear combination of normals is normal. Therefore:

\hat{\alpha} + \hat{\beta} - \operatorname{N}(\alpha + \beta, \operatorname{Var}(\hat{\alpha} + \hat{\beta}))
In general a confidence interval is:

P(estimate - 2*se < parameter < estimate + 2*se) = .95.

In our case:

P((\hat{\alpha} + \hat{\beta}) - 2 \times (\sqrt{\operatorname{Var}(\hat{\alpha} + \hat{\beta})}) < (\alpha + \beta) < (\hat{\alpha} + \hat{\beta}) + 2 \times (\sqrt{\operatorname{Var}(\hat{\alpha} + \hat{\beta})})) = 95\%,

which is the same that:

(\hat{\alpha} + \hat{\beta}) \pm 2\sqrt{\operatorname{Var}(\hat{\alpha} + \hat{\beta})}
```

• Two sided or one sided is matter. More or less is one sided, In between is two sided, does not equal is two sided (absolute value)

Use qt(1 - $\alpha/2$, df) for 2-sided critical t-value

• Look for this table to calculate t value if n is small. Get information of n and also confidence interval.

TABLE IV. CUMULATIVE "STUDENT'S" DISTRIBUTION*											
	$F(t) = \int_{-\infty}^{t} \frac{\left(\frac{n-1}{2}\right)!}{\left(\frac{n-2}{2}\right)! \sqrt{rn} \left(1+\frac{x^{2}}{n}\right)^{(n+1)/2}} dx$										
F	.75	.90	.95	.975	.90	.995	.9995				
1 2 8 4	1.000 .816 .765 .741	3.078 1.886 1.638	6.314 2.920 2.353 2.139	12.706 4.303 3.182 9.776	31.821 6.965 4.541	63.657 9.925 5.841	636.619 31.598 12.941				
5	.727	1.476	2 015	2.571	3.365	4.032	8.610				
6 7 8 9 10	.718 .711 .706 .703 .700	1.440 1.415 1.397 1.383 1.372	1.943 1.895 1.860 1.833 1.812	2.447 2.365 2.306 2.262 2.228	8.143 2.998 2.896 2.821 2.764	3.707 3.499 3.355 3.250 3.169	5.959 5.406 5.041 4.781 4.587				
11 12 13 14 15	.697 .695 .694 .692 .691	$1.363 \\ 1.356 \\ 1.350 \\ 1.345 \\ 1.341$	1.796 1.782 1.771 1.761 1.753	2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602	3.106 3.055 3.012 2.977 2.947	4.437 4.318 4.221 4.140 4.073				
16 17 18 19 20	.690 .689 .688 .688 .688	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845	4.015 3.965 3.922 3.883 3.850				
21 22 23 24 25	.686 .686 .685 .685 .684	1.323 1.321 1.319 1.318 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.797 2.787	3.819 3.792 3.767 3.745 3.725				
26 27 28 29 30	.684 .684 .683 .683 .683	$1.315 \\ 1.314 \\ 1.313 \\ 1.311 \\ 1.311 \\ 1.310 $	1.706 1.703 1.701 1.699 1.697	2.058 2.052 2.048 2.045 2.045	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750	3.707 3.690 3.674 3.659 3.646				
40 60 120	.681 .679 .677	1.303 1.296 1.289	1.684 1.671 1.658 1.645	2.021 2.000 1.980 1.960	2.423 2.390 2.358 2.326	2.704 2.660 2.617 2.576	8.551 3.460 3.373 3.291				
	2	<u>ـ</u>	tistical Tabl	es" of R. A.	Fisher and published a	Frank Yate	n published				

Chapter 6 Ordinary Least Square

- Obtain beta from the manual calculation is slope = covariance XY / variance X
- The OLS estimator is biased if the omitted variable is correlated with the included variable. Because then the omitted variable will be absorbed by error.

DISTRIBUTION
$\overline{X} - \mu_X \sim N(0.1)$
σ_x/\sqrt{n}
$\overline{X} - \mu_X \sim N(0.1)$
σ_x/\sqrt{n}
$\frac{\overline{X} - \mu_X}{s_y / \sqrt{n}} \sim N(0, 1)$
$\frac{\overline{X} - \mu_X}{\frac{x}{s} - \sqrt{n}} \sim t_{n-1}$

• Degree of freedom, k calculated from the number of available variables (Beta) in the model.

$$T = \frac{Z}{\sqrt{X_k}}$$
$$T \sim t_k$$

"T is *t*-distributed with *k* degrees of freedom"

Chapter 7 Simple Linear Regression, Plugin Prediction

• Fitted Value vs Error

$$\varepsilon_{i} = y_{i} - (\alpha + \beta x_{i}) \approx y_{i} - (\hat{\alpha} + \hat{\beta} x_{i}) = e_{i}$$
$$e_{i} = y_{i} - \hat{y}_{i}$$

Chapter 8 Simple Linear Regression Fits Residual R Square

to

$$\begin{split} \mathbf{S}_{y}^{2} &= \mathbf{S}_{\bar{y}}^{2} + \mathbf{S}_{e}^{2} & \text{because resids and fits have 0 sample correlation.} \\ &\implies \\ & \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2} = \sum_{i=1}^{n} (\hat{\mathbf{y}}_{i} - \overline{\mathbf{y}})^{2} + \sum_{i=1}^{n} \mathbf{e}_{i}^{2} \\ & \text{where the second se$$

Summary of Functional Forms Involving Logarithms

 Dependent
 Independent
 Interpretation

 Iodel
 Variable
 Variable
 of \$\beta\$.

Model	Variable	Variable	of β_1
Level-level	у	x	$\Delta y = \beta_1 \Delta x$
Level-log	у	$\log(x)$	$\Delta y = (\beta_1 / 100) \% \Delta x$
Log-level	log(y)	x	$\% \Delta y = (100\beta_1) \Delta x$
Log-log	log(y)	$\log(x)$	$\%\Delta y = \beta_1\%\Delta x$

Chapter 9-10 Multiple Regression

- The error is independent (zero conditional mean assumption). We need error is independent. This is important for unbiasedness, to check causality or not. Umbrellas vs Rain. There is related but no causality. In finance, there is causality.
- Goodness of fit (R Square) should not depend on the units of measurement
- Understand the relationship between variables with negative or positive coefficient.
- Concern about a large ceteris paribus difference in independent variables measures if it almost two and one-half standard deviations is needed to obtain a predicted difference in dependent variables or a half a point.
- The variables having negative values cannot be converted to logarithm like profits.

- How to measure percentage increase in explanation of additional variables by percentages? by . just looking at the coefficient from regression.
- Learning how to construct model •
- The more efficient model can be tested by comparing variance number, lower variance is . more efficient. A more efficient estimator has a smaller variance
- The sample correlation between log (mktval) and profits is about .78, which is fairly high. As • we know, this causes no bias in the OLS estimators, although it can cause their variances to be large. Given the fairly substantial correlation between market value and firm profits, it is not too surprising that the latter adds nothing to explaining CEO salaries. Also, profits is a short term measure of how the firm is doing while mktval is based on past, current, and expected future profitability. Do multicollinearity issue exist?
- To see the variables explain or not, test using the coefficient that is small or big and how many • percentages explaining dependant variables. Compare this coefficient how many change in particular variables can change the dependent variables. Look at the r square to compare with how many percentage all variables explaining dependent one.

Source	SS	df	MS	Number of obs	s =	177
Model Residual	19.35098 🗸 45.2952404	3 173	6.45032665 .261822199	F(3, 173) Prob > F R-squared	=	24.64 0.0000 0.2993
Total	64.6462203	176	.36730807	Adj R-squared Root MSE	1 =	.51169
lsalary	Coef. Sto	d. Err.	t I	?> t [95% (Conf.	Interval]
lsales lmktval profits _cons	.1613683 .03 .0975286 .00 .0000357 4.686924 .3	399101 636886 000152 797294	4.04 (1.53 (0.23 (12.34 (0.000 .08259 0.12802817 0.81500026 0.000 3.9376	949 782 543 125	.2401416 .2232354 .0003356 5.436423

Formula:

$$F = \frac{\left(R_{ur}^2 - R_r^2\right)/q}{\left(1 - R_{ur}^2\right)/(n - k - 1)}, \text{ where again } \hat{\beta}_j : t - stat = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$$

r is restricted and ur is unrestricted

H₀:
$$b_j = a_j$$

 $\log(salary) = \beta_0 + \beta_1 years + \beta_2 gamesyr + \beta_3 bavg + \beta_4 hrunsyr + \beta_5 rbisyr + \varepsilon$

og(salary)=11.10 +	.0689 years	+ .012 gam	nesyr +
(0.29)	(.0121)	(.0026)	
[38.27]	[5.69]	[4.84]	
.00098	bavg + .0144	hrunsyr +.	0108 rbisyr
(.00110	0) (.0161) (.0072)
[0.89]	[0.89]		[1.5]

Standard errors in parenthesis () and t-stats in brackets []

n=353 SSR=183.186 R^2=.6278

(1) H_a : $\beta_i > 0$

Reject H_0 if t-stat > critical value

(2) H_a : $\beta_i < 0$

Reject H₀ if t-stat < -(critical value) • $H_a: \underline{\mu} \neq 0$ is a two-sided alternative • $H_a: \underline{\beta} \neq 0$ is a two-sided alternative

(3)
$$H_a$$
: $\beta_i \neq 0$

Reject H_0 if |t - stat| > critical value

$$t-stat = \frac{(\hat{\beta}_j - a_j)}{se(\hat{\beta}_j)}$$
, where

- $a_i = 0$ for the standard test
- Besides our null, H₀, we need an alternative hypothesis, H_a, and a significance level
- H_a may be one-sided, or two-sided
- $H_a: \underline{\beta} > 0$ and $H_1: \underline{\beta} < 0$ are one-sided
- · If we want to have only a 5% probability of rejecting H₀ if it is really true, then we say our significance level is 5%

• Hypothesis Testing

. reg sleep totwrk age educ								
Source	\$\$	df	MS		Number of obs	=	706	
Model	15784778.6	3	5261592.87		Prob > F	2	0.0000	
Residual	123455057	702	175861.905		R-squared	-	0.1134	
7.4.1	*20220020	705	407502 242		Adj R-squared	-	0.1096	
lotal	139239830	705	197503.313		ROOT MSE	-	419.30	
-1	6 -				forth could			
sieeb	COef.	Sta. 1	rr. t	P>[t]	[95% Cont.	Int	ervarj	
totwrk	1483734	.01669	35 -8.89	0.000	1811487	1	155982	
age	2.199885	1.4457	17 1.52	0.129	6385613	5.	038331	
educ	-11.13381	5.8845	575 -1.89	0.059	-22.68729	.4	196615	
_cons	3638.245	112.27	751 32.40	0.000	3417.81	38	858.681	
. reg sleep to	twrk							
Source	SS	df	MS		Number of obs	=	706	
Model	14201717 2	1	14201717 2		F(1, 704)	2	81.09	
Recidual	1249501717.2	704	177255 202		Prod 7 r	2	0.1000	
nesidudi	124050115		11133331202		Adi R-squared	Ξ.	0 1020	
Total	139239836	705	197503.313		Root MSE	-	421.14	
sleep	Coef.	Std. E	rr. t	P> t	[95% Conf.	Int	erval]	
totwrk	1507458	.01674	103 -9.00	0.000	1836126		117879	
_cons	3586.377	38,912	243 92.17	0.000	3509.979	36	62.775	

(e) With df = 706 – 4 = 702, we use the standard normal critical value, which is 1.96 for a two-tailed test at the 5% level. Now teduc = $\Box 11.13/5.88 \Box \Box \Box 1.89$, so |teduc| = 1.89 < 1.96, and we fail to reject H0: $\beta educ = 0$ at the 5% level. Also, $tage \approx 1.52$, so age is also. Statistically insignificant at the 5% level. $ttotwrk = -.1483 / .0166 \approx -8.88$, because its absolute value is larger than 1.96, therefore totwrk is statistically significant. Failed to rejects means insignificant?

- If we get the R square low, we need to think other variables that might influence the dependent variables.
- F test formula, n is the number of observation, q is the number of tested joint variables (2) and k is the number of variables (3):

Since the R² from a model with only an intercept
will be zero, the *F* statistic is simply
$$F = \frac{\left(\frac{R_{wr}^2 - R_r^2}{(1 - R_{wr}^2)/(n - k - 1)}\right)}{(1 - R_{wr}^2)/(n - k - 1)}$$
, where again
r is restricted and ur is unrestricted
 $F = \frac{\frac{R^2}{k}}{(1 - R^2)/(n - k - 1)}$

- We need to compute the R-squared form of the F statistic for joint significance. But F = [(.113 □ .103)/(1 □ .113)](702/2) □ 3.96. The 5% critical value in the F(2,702) distribution with denominator df = □ has a critical value = 3.00. Therefore, educ and age are jointly significant at the 5% level (3.96 > 3.00). In fact, the p-value is about .019 (0.019 is the total p value of the joint variables), and so educ and age are jointly significant at the 2% level.
- Compare after and before omit variables for f test for the coefficients in the model.
- The standard t and F statistics that we used assume homoscedasticity, in addition to the other CLM assumptions. If there is heteroscedasticity in the equation, the tests are no longer valid. Heteroscedasticity tested using the scatter plot. Normal distribution tested using histogram.
- There is no reason to remove any of the explanatory variables from this model. These variables are individually significant, jointly significant (the p-value of the F-test is zero), high correlation between explanatory variables does not seem to be an issue, etc.
- All of the explanatory variables are statistically significant at the 5% level of significance (including the constant).
- This is how to calculate R square manually by not looking at Stata result.

(iv) The sum of squared residuals, $\sum_{i=1}^{n} \hat{u}_{i}^{2}$, is about .4347 (rounded to four

decimal places), and the total sum of squares, $\sum_{i=1}^{n} (y_i - \overline{y})^2$, is about 1.0288. So the *R*-squared from the regression is

 $R^2 = 1 - SSR/SST \approx 1 - (.4347/1.0288) \approx .577.$

Exam Q D2=x12-x22; e.g. D2=(25-21)

....

DN=X1N-X2N; e.g. D20=16-17

This this is a random sample of observations of D. Denote the population mean and the population variance respectively by μ_D and σ_D^2 . Hence the parameter of interest is μ_D and D1, D2,....DN is a random sample from the distribution of D which has variance σ_D^2 . Thus statistical interest is in ONE unknown population mean, i.e. μ_D , and this is exactly what we learned in class. So, with more formality:

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i \text{ and } s_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2$$

And

$$E(\overline{D}) = \mu_D; Var(\overline{D}) = \sigma_D^2/n$$

Assuming the CLT holds:

$$\overline{D} \sim N(\mu_D, \frac{\sigma_D^2}{n})$$
 and $Z = \frac{\overline{D} - \mu_D}{\sigma^2 / n} \sim N(0, 1)$
Using the standard error, $s = \overline{D} = \frac{s_D}{\sqrt{n}}$
 $t = \frac{\overline{D} - \mu_D}{s - e_{-}(\overline{D})} \sim t_{n-1}$

- Only (ii), omitting an important variable, can cause bias, and this is true only when the omitted variable is correlated with the included explanatory variables. The homoskedasticity assumption, played no role in showing that the OLS estimators are unbiased. (Homoskedasticity was used to obtain the usual variance formulas for the *j* b.) Further, the degree of collinearity between the explanatory variables in the sample, even if it is reflected in a correlation as high as .95, does not affect the Gauss-Markov assumptions. Only if there is a *perfect* linear relationship among two or more explanatory the corresponding assumption is violated.
- Testing one variable by omitting another variable if the magnitude of simple linear regression for independent variables larger than the multiple regression.
- When to use one tailed when to use two tail?, Check again how to calculate standard error.
- The intercept unit of measurement follow the y head unit of measurement. Unit of slope is the unit of y head per unit of slope itself that is mentioned in the model.
- One tailed formula

$$P\left[-Z\left(1-\alpha\right)\sigma_{\overline{X}}+\overline{X}\leq\mu\right]=1-\alpha$$